Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659771

RESUMO

Major depressive disorder (MDD) is linked to impaired structural and synaptic plasticity in limbic brain regions. Astrocytes, which regulate synapses and are influenced by chronic stress, likely contribute to these changes. We analyzed astrocyte gene profiles in the nucleus accumbens (NAc) of humans with MDD and mice exposed to chronic stress. Htra1 , which encodes an astrocyte-secreted protease targeting the extracellular matrix (ECM), was significantly downregulated in the NAc of males but upregulated in females in both species. Manipulating Htra1 in mouse NAc astrocytes bidirectionally controlled stress susceptibility in a sex-specific manner. Such Htra1 manipulations also altered neuronal signaling and ECM structural integrity in NAc. These findings highlight astroglia and the brain's ECM as key mediators of sex-specific stress vulnerability, offering new approaches for MDD therapies.

2.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464110

RESUMO

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and thereby more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress -here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J. Utilizing the chronic social defeat stress (CSDS) and chronic variable stress (CVS) paradigms, we first showed sexual dimorphism in the behavioral stress response between the mouse strains. Further, we observed an interaction between genetic background and vulnerability to prolonged exposure to non-social stressors. Finally, we found that DBA/2J and C57BL/6J mice pre-exposed to stress displayed differences in morphine sensitivity. Our results support the hypothesis that genetic variation in predisposition to stress responses influences morphine sensitivity and is likely to modulate the development of drug addiction.

3.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326622

RESUMO

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Assuntos
Transtorno Depressivo Maior , Metaloproteinase 8 da Matriz , Monócitos , Estresse Psicológico , Animais , Humanos , Camundongos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/enzimologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Espaço Extracelular/metabolismo , Metaloproteinase 8 da Matriz/sangue , Metaloproteinase 8 da Matriz/deficiência , Metaloproteinase 8 da Matriz/genética , Metaloproteinase 8 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/química , Monócitos/imunologia , Monócitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Tecido Parenquimatoso/metabolismo , Análise da Expressão Gênica de Célula Única , Comportamento Social , Isolamento Social , Estresse Psicológico/sangue , Estresse Psicológico/genética , Estresse Psicológico/imunologia , Estresse Psicológico/metabolismo
4.
Neurosci Res ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37992997

RESUMO

Childhood and adolescent affiliations guide how individuals engage in social relationships throughout their lifetime and adverse experiences can promote biological alterations that facilitate behavioral maladaptation. Indeed, childhood victims of abuse are more likely to be diagnosed with conduct or mood disorders which are both characterized by altered social engagement. A key domain particularly deserving of attention is aggressive behavior, a hallmark of many disorders characterized by deficits in reward processing. Animal models have been integral in identifying both the short- and long-term consequences of stress exposure and suggest that whether it is disruption to parental care or social isolation, chronic exposure to early life stress increases corticosterone, changes the expression of neurotransmitters and neuromodulators, and facilitates structural alterations to the hypothalamus, hippocampus, and amygdala, influencing how these brain regions communicate with other reward-related substrates. Herein, we describe how adverse early life experiences influence social behavioral outcomes across a wide range of species and highlight the long-term biological mechanisms that are most relevant to maladaptive aggressive behavior.

5.
Proc Natl Acad Sci U S A ; 120(49): e2305778120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011565

RESUMO

Clinical studies have revealed a high comorbidity between autoimmune diseases and psychiatric disorders, including major depressive disorder (MDD). However, the mechanisms connecting autoimmunity and depression remain unclear. Here, we aim to identify the processes by which stress impacts the adaptive immune system and the implications of such responses to depression. To examine this relationship, we analyzed antibody responses and autoimmunity in the chronic social defeat stress (CSDS) model in mice, and in clinical samples from patients with MDD. We show that socially stressed mice have elevated serum antibody concentrations. We also confirm that social stress leads to the expansion of specific T and B cell populations within the cervical lymph nodes, where brain-derived antigens are preferentially delivered. Sera from stress-susceptible (SUS) mice exhibited high reactivity against brain tissue, and brain-reactive immunoglobulin G (IgG) antibody levels positively correlated with social avoidance behavior. IgG antibody concentrations in the brain were significantly higher in SUS mice than in unstressed mice, and positively correlated with social avoidance. Similarly, in humans, increased peripheral levels of brain-reactive IgG antibodies were associated with increased anhedonia. In vivo assessment of IgG antibodies showed they largely accumulate around blood vessels in the brain only in SUS mice. B cell-depleted mice exhibited stress resilience following CSDS, confirming the contribution of antibody-producing cells to social avoidance behavior. This study provides mechanistic insights connecting stress-induced autoimmune reactions against the brain and stress susceptibility. Therapeutic strategies targeting autoimmune responses might aid in the treatment of patients with MDD featuring immune abnormalities.


Assuntos
Autoimunidade , Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Encéfalo , Comportamento Social , Imunoglobulina G , Estresse Psicológico/psicologia , Camundongos Endogâmicos C57BL
6.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873069

RESUMO

Second-messenger signaling within the mesolimbic reward circuit is involved in both the long-lived effects of stress and in the underlying mechanisms that promote drug abuse liability. To determine the direct role of kinase signaling within the nucleus accumbens, specifically mitogen-activated protein kinase 1 (ERK2), in mood- and drug-related behavior, we used a herpes-simplex virus to up- or down-regulate ERK2 in adult male rats. We then exposed rats to a battery of behavioral tasks including the elevated plus-maze, open field test, forced-swim test, conditioned place preference, and finally cocaine self-administration. Herein, we show that viral overexpression or knockdown of ERK2 in the nucleus accumbens induces distinct behavioral phenotypes. Specifically, over expression of ERK2 facilitated depression- and anxiety-like behavior while also increasing sensitivity to cocaine. Conversely, down-regulation of ERK2 attenuated behavioral deficits, while blunting sensitivity to cocaine. Taken together, these data implicate ERK2 signaling, within the nucleus accumbens, in the regulation of affective behaviors and modulating sensitivity to the rewarding properties of cocaine.

7.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37662400

RESUMO

Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.

8.
Sci Rep ; 13(1): 10872, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407659

RESUMO

Increased use of benzodiazepines in adolescents have been reported, with alprazolam (ALP) being the most abused. Drug abuse during adolescence can induce changes with lasting consequences. This study investigated the neurobiological consequences of ALP exposure during adolescence in C57BL/6J male mice. Mice received ALP (0, 0.5, 1.0 mg/kg) once/daily (postnatal day 35-49). Changes in responsiveness to morphine (2.5, 5.0 mg/kg), using the conditioned place preference paradigm, were assessed 24-h and 1-month after ALP exposure. In a separate experiment, mice received ALP (0, 0.5 mg/kg) and then sacrificed 24-h or 1-month after treatment to assess levels of extracellular signal regulated kinase 1/2 (ERK1/2) gene expression, protein phosphorylation, and downstream targets (CREB, AKT) within the ventral tegmental area (VTA) and nucleus accumbens (NAc). ALP-pretreated mice developed a strong preference to the compartment(s) paired with a subthreshold dose (2.5 mg/kg) of MOR short-term, and this effect was also present in the 1-month group. Adolescent ALP exposure resulted in dysregulation of ERK-signaling within the VTA-NAc pathway 24-h and 1-month after ALP exposure. Results indicate ALP exposure during adolescence potentiates the rewarding properties of MOR and induces persistent changes in ERK-signaling within the VTA-NAc pathway, a brain circuit highly implicated in the regulation of both drug reward and mood- related behaviors.


Assuntos
Morfina , Área Tegmentar Ventral , Masculino , Camundongos , Animais , Morfina/farmacologia , Morfina/metabolismo , Área Tegmentar Ventral/metabolismo , Alprazolam/farmacologia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Sistemas do Segundo Mensageiro , Recompensa
9.
Res Sq ; 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36778505

RESUMO

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

10.
Nature ; 613(7945): 696-703, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450985

RESUMO

In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.


Assuntos
Vias Neurais , Trauma Psicológico , Recompensa , Núcleos Septais , Comportamento Social , Estresse Psicológico , Animais , Feminino , Masculino , Camundongos , Encéfalo/patologia , Encéfalo/fisiopatologia , Cálcio/análise , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurotensina/metabolismo , Optogenética , Trauma Psicológico/patologia , Trauma Psicológico/fisiopatologia , Núcleos Septais/patologia , Núcleos Septais/fisiopatologia , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia
11.
Chronic Stress (Thousand Oaks) ; 6: 24705470221111094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874910

RESUMO

Background: Individuals who experience emotional, physical, or sexual abuse as children suffer from higher rates of major depressive disorder, drug abuse, and suicide. Early life interventions such as peer support groups can be beneficial to adolescents who experience trauma, suggesting that social support is important in facilitating rehabilitation and promoting resiliency to stress. Although there are some animal paradigms that can model how peer-peer interactions influence stress-reactivity, less is known about how individual stress experiences influence the effectiveness of social buffering. Methods: The vicarious social defeat stress (VSDS) paradigm allows for the assessment of two different stress modalities, physical (PS) and emotional (ES) stress, which confer different levels of stress with similar biological and behavioral outcomes. Using a modified VSDS paradigm in which pairs of mice experience ES and PS together we can begin to evaluate how stress exposure influences the buffering efficacy of social relationships. Adolescent mice (postnatal day 35) were randomly combined into dyads and were allocated into either mutual experience or cohabitation pairs. Within each dyad, one mouse was assigned to the physically stressed (PS) condition and was repeatedly exposed to an aggressive CD1 mouse while the other mouse was designated as the partner. In the mutual experience dyads the partner mice witnessed the defeat bout (ES) while in the cohabitation dyads the partner was separated from the PS mouse and returned after the 10 min defeat bout was terminated (non-stressed). After 10 days of defeat, mice were tested in the social interaction test (SIT), the elevated plus maze (EPM), and the forced swim test (FST). Results: PS-exposed mice in the cohabitation dyads, but not those in the mutual experience dyads, showed significantly more avoidance of a novel CD1 aggressor or c57BL/6 mouse, in the SIT. Surprisingly, both partner conditions showed avoidance to a CD1. Interestingly, non-stressed partner mice spent less time in the open arms of the EPM, suggesting increased anxiety; only PS-exposed mice in cohabitation dyads showed more time spent immobile in the FST, indicative of increased learned helplessness. Conclusions: These data suggest that the efficacy of social buffering can be mediated by individual stress experience.

12.
Nat Commun ; 13(1): 164, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013188

RESUMO

Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.


Assuntos
Ansiedade/metabolismo , Barreira Hematoencefálica/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Selectina E/genética , Estresse Psicológico/metabolismo , Transcriptoma , Animais , Ansiedade/genética , Ansiedade/patologia , Transporte Biológico , Biomarcadores/metabolismo , Barreira Hematoencefálica/patologia , Depressão/genética , Depressão/patologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Selectina E/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/irrigação sanguínea , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Caracteres Sexuais , Estresse Psicológico/genética , Estresse Psicológico/patologia
13.
Biol Psychiatry ; 91(1): 81-91, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33896623

RESUMO

BACKGROUND: Major depressive disorder is a pervasive and debilitating syndrome characterized by mood disturbances, anhedonia, and alterations in cognition. While the prevalence of major depressive disorder is twice as high for women as men, little is known about the molecular mechanisms that drive sex differences in depression susceptibility. METHODS: We discovered that SLIT1, a secreted protein essential for axonal navigation and molecular guidance during development, is downregulated in the adult ventromedial prefrontal cortex (vmPFC) of women with depression compared with healthy control subjects, but not in men with depression. This sex-specific downregulation of Slit1 was also observed in the vmPFC of mice exposed to chronic variable stress. To identify a causal, sex-specific role for SLIT1 in depression-related behavioral abnormalities, we performed knockdown (KD) of Slit1 expression in the vmPFC of male and female mice. RESULTS: When combined with stress exposure, vmPFC Slit1 KD reflected the human condition by inducing a sex-specific increase in anxiety- and depression-related behaviors. Furthermore, we found that vmPFC Slit1 KD decreased the dendritic arborization of vmPFC pyramidal neurons and decreased the excitability of the neurons in female mice, effects not observed in males. RNA sequencing analysis of the vmPFC after Slit1 KD in female mice revealed an augmented transcriptional stress signature. CONCLUSIONS: Together, our findings establish a crucial role for SLIT1 in regulating neurophysiological and transcriptional responses to stress within the female vmPFC and provide mechanistic insight into novel signaling pathways and molecular factors influencing sex differences in depression susceptibility.


Assuntos
Transtorno Depressivo Maior , Anedonia , Animais , Ansiedade , Feminino , Masculino , Camundongos , Córtex Pré-Frontal , Caracteres Sexuais
14.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33931727

RESUMO

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Assuntos
Agressão , Núcleo Dorsal da Rafe , Interleucina-1beta , Serotonina , Agressão/fisiologia , Animais , Núcleo Dorsal da Rafe/metabolismo , Humanos , Individualidade , Interleucina-1beta/metabolismo , Masculino , Camundongos , Serotonina/metabolismo
15.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581271

RESUMO

Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, although gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.


Assuntos
Hierarquia Social , Camundongos/psicologia , Estresse Psicológico , Adaptação Psicológica , Animais , Comportamento Animal , Feminino , Masculino , Camundongos Endogâmicos C57BL , Distância Psicológica , Predomínio Social
16.
Front Neurosci ; 15: 701919, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408623

RESUMO

A dramatic increase in the prevalence of major depression and diet-related disorders in adolescents has been observed over several decades, yet the mechanisms underlying this comorbidity have only recently begun to be elucidated. Exposure to western-style diet (WSD), high in both fats (45% kcal) and carbohydrates (35% kcal): e.g., high fat diet (HFD), has been linked to the development of metabolic syndrome-like symptoms and behavioral dysregulation in rodents, as similarly observed in the human condition. Because adolescence is a developmental period highlighted by vulnerability to both stress and poor diet, understanding the mechanism(s) underlying the combined negative effects of WSDs and stress on mood and reward regulation is critical. To this end, adolescent male C57 mice were exposed to vicarious social defeat stress (VSDS), a stress paradigm capable of separating physical (PS) versus psychological/emotional (ES) stress, followed by normal chow (NC), HFD, or a separate control diet high in carbohydrates (same sucrose content as HFD) and low in fat (LFD), while measuring body weight and food intake. Non-stressed control mice exposed to 5 weeks of NC or HFD showed no significant differences in body weight or social interaction. Mice exposed to VSDS (both ES and PS) gain weight rapidly 1 week after initiation of HFD, with the ES-exposed mice showing significantly higher weight gain as compared to the HFD-exposed control mice. These mice also exhibited a reduction in saccharin preference, indicative of anhedonic-like behavior. To further delineate whether high fat was the major contributing factor to these deficits, LFD was introduced. The mice in the VSDS + HFD gained weight more rapidly than the VSDS + LFD group, and though the LFD-exposed mice did not gain weight as rapidly as the HFD-exposed mice, both the VSDS + LFD- and VSDS + HFD-exposed mice exhibited attenuated response to the antidepressant fluoxetine. These data show that diets high in both fats and carbohydrates are responsible for rapid weight gain and reduced reward sensitivity; and that while consumption of diet high in carbohydrate and low in fat does not lead to rapid weight gain, both HFD and LFD exposure after stress leads to reduced responsiveness to antidepressant treatment.

17.
Biol Psychiatry ; 90(7): 482-493, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34247781

RESUMO

BACKGROUND: Major depressive disorder is prevalent in children and adolescents and is associated with a high degree of morbidity throughout life, with potentially devastating personal consequences and public health impact. The efficacy of ketamine (KET) as an antidepressant has been demonstrated in adolescent rodents; however, the neurobiological mechanisms underlying these effects are unknown. Recent evidence showed that KET reverses stress-induced (i.e., depressive-like) deficits within major mesocorticolimbic regions, such as the prefrontal cortex, nucleus accumbens (NAc), and hippocampus, in adult rodents. However, little is known about KET's effect in the ventral tegmental area (VTA), which provides the majority of dopaminergic input to these brain regions. METHODS: We characterized behavioral, biochemical, and electrophysiological effects produced by KET treatment in C57BL/6J male mice during adolescence (n = 7-10 per condition) within the VTA and its major projection regions, namely, the NAc and prefrontal cortex. Subsequently, molecular targets within the VTA-NAc projection were identified for viral gene transfer manipulations to recapitulate the effects of stress or KET treatment. RESULTS: Repeated KET treatment produced a robust proresilient response to chronic social defeat stress. This effect was largely driven by Akt signaling activity within the VTA and NAc, and it could be blocked or recapitulated through direct Akt-viral-mediated manipulation. Additionally, we found that the KET-induced resilient phenotype is dependent on VTA-NAc, but not VTA-prefrontal cortex, pathway activity. CONCLUSIONS: These findings indicate that KET exposure during adolescence produces a proresilient phenotype mediated by changes in Akt intracellular signaling and altered neuronal activity within the VTA-NAc pathway.


Assuntos
Transtorno Depressivo Maior , Ketamina , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Fenótipo , Área Tegmentar Ventral
18.
J Neurosci Res ; 98(12): 2541-2553, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918293

RESUMO

Major depressive disorder affects ~20% of the world population and is characterized by strong sexual dimorphism with females being two to three times more likely to develop this disorder. Previously, we demonstrated that a combination therapy with dihydrocaffeic acid and malvidin-glucoside to synergistically target peripheral inflammation and stress-induced synaptic maladaptation in the brain was effective in alleviating chronic social defeat stress (CSDS)-induced depression-like phenotype in male mice. Here, we test the combination therapy in a female CSDS model for depression and compared sex-specific responses to stress in the periphery and the central nervous system. Similar to male mice, the combination treatment is also effective in promoting resilience against the CSDS-induced depression-like behavior in female mice. However, there are sex-specific differences in peripheral immune responses and differential gene regulation in the prefrontal cortex to chronic stress and to the treatment. These data indicate that while therapeutic approaches to combat stress-related disorders may be effective in both sexes, the mechanisms underlying these effects differ, emphasizing the need for inclusion of both sexes in preclinical studies using animal models.


Assuntos
Transtorno Depressivo Maior/imunologia , Modelos Animais de Doenças , Imunidade/fisiologia , Córtex Pré-Frontal/imunologia , Caracteres Sexuais , Estresse Psicológico/imunologia , Animais , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo , Derrota Social , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia
19.
Psychopharmacology (Berl) ; 237(10): 3125-3137, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594187

RESUMO

Early life stress influences adult psychopathology and is associated with an increase in the propensity for drug use/seeking throughout the lifespan. Animal models corroborate that stress exposure exacerbates maladaptive reactivity to stressful stimuli while also shifting the rewarding properties of many drugs of abuse, including nicotine (NIC), a stimulant commonly misused by adolescents. Interestingly, NIC treatment can also normalize some stress-induced behavioral deficits in adult rodents; however, little is known about NIC's therapeutic efficacy following stress experienced during adolescence. The goal of the following experiments was to elucidate NIC's ability to buffer the negative consequences of stress exposure, and to further assess behavioral responsivity while on the drug. Given that stress often occurs in both physical and non-physical forms, we employed the vicarious social defeat stress (VSDS) model which allows for investigation of both physical (PS) and emotional stress (ES) exposure. After 10 days, exposure to PS and ES decreased interaction with a social target in the social interaction test (SIT), confirming social avoidance. Groups were further divided and given NIC (0.0 or 160 mg/L) in their drinking water. After 1 month of NIC consumption, the mice were exposed to the SIT, elevated plus maze (EPM), and the forced swim test (FST), respectively. NIC-treated mice showed a reversal of stress-induced deficits in the EPM and FST. Surprisingly, the mice did not show improvement in the SIT regardless of treatment condition. Together, these data confirm NIC's ability to normalize some stress-induced behavioral deficits; however, NIC's effects on social behavior need further investigation.


Assuntos
Nicotina/administração & dosagem , Angústia Psicológica , Comportamento Social , Estresse Fisiológico/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Fatores Etários , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Nicotínicos/administração & dosagem , Estresse Fisiológico/fisiologia , Estresse Psicológico/psicologia , Resultado do Tratamento
20.
Behav Brain Res ; 383: 112508, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017978

RESUMO

Two decades ago, the observation of a rapid and sustained antidepressant response after ketamine administration provided an exciting new avenue in the search for more effective therapeutics for the treatment of clinical depression. Research elucidating the mechanism(s) underlying ketamine's antidepressant properties has led to the development of several hypotheses, including that of disinhibition of excitatory glutamate neurons via blockade of N-methyl-d-aspartate (NMDA) receptors. Although the prominent understanding has been that ketamine's mode of action is mediated solely via the NMDA receptor, this view has been challenged by reports implicating other glutamate receptors such as AMPA, and other neurotransmitter systems such as serotonin and opioids in the antidepressant response. The recent approval of esketamine (Spravato™) for the treatment of depression has sparked a resurgence of interest for a deeper understanding of the mechanism(s) underlying ketamine's actions and safe therapeutic use. This review aims to present our current knowledge on both NMDA and non-NMDA mechanisms implicated in ketamine's response, and addresses the controversy surrounding the antidepressant role and potency of its stereoisomers and metabolites. There is much that remains to be known about our understanding of ketamine's antidepressant properties; and although the arrival of esketamine has been received with great enthusiasm, it is now more important than ever that its mechanisms of action be fully delineated, and both the short- and long-term neurobiological/functional consequences of its treatment be thoroughly characterized.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Ketamina/uso terapêutico , Antidepressivos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Humanos , Ketamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Receptor Muscarínico M1/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides mu/efeitos dos fármacos , Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Receptores sigma/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...